📋 Overview
What You'll Learn: How to use VS Code with Jupyter Notebooks for ClydeEnergy data science and development workflows.
🎯 Learning Objectives
By the end of this guide, ClydeEnergy team members will be able to:
- Install and configure VS Code for Jupyter development
- Create and manage Jupyter notebooks in VS Code
- Execute Python code in interactive cells
- Combine code, markdown, and visualizations
- Debug notebook code effectively
- Use advanced features for professional development
🛠️ Technology Stack
- Editor: Visual Studio Code
- Extensions: Jupyter, Python
- Language: Python 3.8+
- Notebook: Jupyter (.ipynb files)
- Libraries: pandas, matplotlib, numpy
🔧 Install Required Extensions
1
Install Jupyter Extension
VS Code Extensions
# ClydeEnergy VS Code Setup Steps: # 1. Press Ctrl+Shift+X (or Cmd+Shift+X on Mac) # 2. Search for "Jupyter" # 3. Install the official Jupyter extension by Microsoft # 4. This enables native Jupyter notebook support
2
Install Python Extension
Python Extension
# ClydeEnergy Python Extension: # 1. Search for "Python" in VS Code Extensions # 2. Install the official Python extension by Microsoft # 3. Provides IntelliSense and debugging support # 4. Essential for ClydeEnergy development workflow
💡 ClydeEnergy Tip: If this is your first time installing the Jupyter extension, you'll see a welcome experience that walks you through creating your first notebook.
⚙️ Setup Environment
1
Check Python Installation
Terminal
# ClydeEnergy Python Environment Check python --version # or python3 --version # Expected: Python 3.8+ for ClydeEnergy projects
2
Create Virtual Environment
Virtual Environment Setup
# Create ClydeEnergy virtual environment python -m venv clydeenergy_jupyter # Activate on Windows clydeenergy_jupyter\Scripts\activate # Activate on macOS/Linux source clydeenergy_jupyter/bin/activate # Install essential packages for ClydeEnergy pip install jupyter pandas numpy matplotlib seaborn
⚠️ ClydeEnergy Note: Always use virtual environments to avoid package conflicts between different projects.
📓 Create Your First Notebook
1
Create New Notebook
Notebook Creation Methods
# ClydeEnergy Notebook Creation: # Method 1: Command Palette # Press Ctrl+Shift+P → Type "Create: New Jupyter Notebook" # Method 2: File Menu # File → New File → Jupyter Notebook # Method 3: File Explorer # Right-click → New File → name.ipynb
2
ClydeEnergy Naming Convention
File Naming Standards
# ClydeEnergy Naming Convention: # Format: YYYY-MM-DD_ClydeEnergy_ProjectType_Description.ipynb # Examples: # 2025-08-03_ClydeEnergy_DataAnalysis_EnergyMetrics.ipynb # 2025-08-03_ClydeEnergy_MachineLearning_Forecasting.ipynb # 2025-08-03_ClydeEnergy_Visualization_Dashboard.ipynb
📁 ClydeEnergy Organization: Use descriptive names that include date, project type, and purpose for better team collaboration.
🔌 Connect to Kernel
1
Select ClydeEnergy Kernel
Kernel Connection
# ClydeEnergy Kernel Connection Steps: # 1. Click "Select Kernel" in top-right of notebook # 2. Choose "Python Environment" from dropdown # 3. Select your ClydeEnergy virtual environment # 4. Wait for kernel to initialize
2
Verify Connection
Python Test
# ClydeEnergy Kernel Verification import sys import datetime print("🏢 ClydeEnergy Development Environment") print(f"🐍 Python: {sys.version}") print(f"📅 Time: {datetime.datetime.now()}") print("✅ Kernel connected successfully!")
💡 ClydeEnergy Tip: Always use your ClydeEnergy virtual environment to ensure consistent package versions across the team.
▶️ Run Code Cells
1
Basic Cell Execution
ClydeEnergy Example
# ClydeEnergy Hello World print("🏢 Hello from ClydeEnergy!") print("🚀 Welcome to VS Code Jupyter Notebooks") # ClydeEnergy metrics example efficiency = 95.5 savings = 150000 print(f"⚡ Efficiency: {efficiency}%") print(f"💰 Savings: ${savings:,}")
2
Execution Methods
ClydeEnergy Execution Options
# ClydeEnergy Execution Methods: # 1. Single cell: Ctrl+Alt+Enter or play button # 2. Run all: Click "Run All" in toolbar # 3. Run above: Right-click → "Execute Cells Above" # 4. Run below: Right-click → "Execute Cells Below" # 5. Run selection: Highlight code → F8
📊 ClydeEnergy Workflow: Use "Run All" to ensure all data dependencies are loaded before generating reports.
📝 Text, Code, and Visuals
1
ClydeEnergy Markdown Documentation
Markdown Example
# ClydeEnergy Analysis Report ## Executive Summary Energy efficiency analysis for Q3 2025. ### Key Findings: - **Energy Savings**: 25% improvement - **Cost Reduction**: $150,000 annually - **ROI Timeline**: 18 months ### ClydeEnergy Recommendations: 1. Implement Phase 2 upgrades 2. Expand to international facilities 3. Develop predictive models
2
Data Visualization
ClydeEnergy Visualization
# ClydeEnergy Data Analysis import pandas as pd import matplotlib.pyplot as plt # Sample ClydeEnergy data data = { 'Product': ['Solar Panel', 'Wind Turbine', 'Battery'], 'Efficiency': [95.5, 98.2, 96.8], 'Cost': [25000, 45000, 15000] } df = pd.DataFrame(data) print("📊 ClydeEnergy Product Analysis:") print(df) # Create visualization plt.figure(figsize=(10, 6)) plt.bar(df['Product'], df['Efficiency']) plt.title('ClydeEnergy: Product Efficiency') plt.ylabel('Efficiency (%)') plt.show()
💡 ClydeEnergy Tip: Combine data tables, calculations, and visualizations to create comprehensive reports for stakeholders.
🐛 Debugging Options
1
Line-by-Line Debugging
ClydeEnergy Debug Example
# ClydeEnergy Energy Calculation def calculate_savings(usage, efficiency): """Calculate energy savings for ClydeEnergy""" baseline = usage optimized = usage * (1 - efficiency/100) savings = baseline - optimized return savings, optimized # Test with ClydeEnergy data current_usage = 10000 # kWh improvement = 25 # 25% efficiency gain savings, new_usage = calculate_savings(current_usage, improvement) print(f"🔋 Current: {current_usage} kWh") print(f"⚡ New: {new_usage:.0f} kWh") print(f"💚 Savings: {savings:.0f} kWh")
2
Breakpoint Debugging
Advanced Debugging
# ClydeEnergy ROI Calculation def calculate_roi(investment, monthly_savings, years=5): """Calculate ROI for ClydeEnergy projects""" annual_savings = monthly_savings * 12 total_savings = annual_savings * years # Set breakpoint here to inspect variables roi = ((total_savings - investment) / investment) * 100 payback = investment / annual_savings return roi, payback # ClydeEnergy example roi, payback = calculate_roi(50000, 2500) print(f"📈 ROI: {roi:.1f}%") print(f"⏳ Payback: {payback:.1f} years")
⚠️ ClydeEnergy Debug: Right-click in a cell and select "Debug Cell" to step through code line by line.
🚀 Advanced Features
1
Variable Explorer
ClydeEnergy Variables
# ClydeEnergy Advanced Analysis import pandas as pd import numpy as np # Generate ClydeEnergy dataset np.random.seed(42) dates = pd.date_range('2025-01-01', periods=365) energy_data = { 'date': dates, 'solar': np.random.normal(850, 150, 365), 'wind': np.random.normal(620, 200, 365), 'consumption': np.random.normal(1200, 100, 365) } clydeenergy_df = pd.DataFrame(energy_data) clydeenergy_df['net_generation'] = clydeenergy_df['solar'] + clydeenergy_df['wind'] clydeenergy_df['balance'] = clydeenergy_df['net_generation'] - clydeenergy_df['consumption'] print("🔋 ClydeEnergy Annual Summary:") print(f"☀️ Solar: {clydeenergy_df['solar'].sum():,.0f} kWh") print(f"💨 Wind: {clydeenergy_df['wind'].sum():,.0f} kWh") print(f"⚡ Consumption: {clydeenergy_df['consumption'].sum():,.0f} kWh")
2
Data Wrangler Integration
Advanced Data Tools
# ClydeEnergy Data Wrangler Usage: # 1. Click "Variables" in notebook toolbar # 2. Find 'clydeenergy_df' in the variable list # 3. Click the data viewer icon # 4. Install Data Wrangler extension if prompted # Sample operations you can do: monthly_summary = clydeenergy_df.groupby(clydeenergy_df['date'].dt.month).agg({ 'solar': 'mean', 'wind': 'mean', 'consumption': 'mean' }).round(2) print("📅 ClydeEnergy Monthly Analysis:") print(monthly_summary.head())
🔍 ClydeEnergy Advanced: Click "Variables" in the notebook toolbar to see all variables. DataFrames can be opened in a custom editor for detailed inspection.